Muscarinic acetylcholine receptor activation induces Ca2+ mobilization and Na+/K+-ATPase activity inhibition in eel enterocytes.

نویسندگان

  • A Muscella
  • S Greco
  • M G Elia
  • E Jiménez
  • C Storelli
  • S Marsigliante
چکیده

The effect of carbachol (Cch) on intracellular calcium concentration ([Ca2+]i) in eel enterocytes was examined using the fluorescent Ca2+ indicator fura-2. Cch caused a biphasic increase in [Ca2+]i, with an initial spike followed by a progressively decreasing level (over 6 min) to the initial, pre-stimulated, level. The effect of Cch was dose-dependent with a 7.5-fold increase in [Ca2+]i over basal level induced by the maximal dose of Cch (100 microM). In Ca2+-free/EGTA buffer the effect of Cch was less pronounced and the [Ca2+]i returned rapidly to basal levels. The increment of [Ca2+]i was dose-dependently attenuated in cells pre-treated with U73122, a specific inhibitor of phospholipase C, suggesting that the Cch-stimulated increment of [Ca2+]i required inositol triphosphate formation. In the presence of extracellular Ca2+, thapsigargin (TG), a specific microsomal Ca2+-ATPase inhibitor, caused a sustained rise in [Ca2+]i whereas in Ca2+-free medium the increase in [Ca2+]i was transient; in both cases, subsequent addition of Cch was without effect. When 2 mM CaCl2 were added to the cells stimulated with TG or with Cch in Ca2+-free medium, a rapid increase in [Ca2+]i was detected, corresponding to the capacitative Ca2+ entry. Thus, both TG and Cch depleted intracellular Ca2+ stores and stimulated influx of extracellular Ca2+ consistent with capacitative Ca2+ entry. K+ depolarization obtained with increasing concentrations of KCl in the extracellular medium induced a dose-related increase in [Ca2+]i which was blocked by 2 microM nifedipine, a non-specific L-type Ca2+ channel blocker. Nifedipine also changed significantly the height of the Ca2+ transient, and the rate of decrement to the pre-stimulated [Ca2+]i level, indicating that Ca2+ entry into enterocytes also occurs through an L-type voltage-dependent calcium channel pathway. We also show that isolated enterocytes stimulated with increasing Cch concentrations (0.1-1000 microM) showed a dose-dependent inhibition of the Na+/K+-ATPase activity. The threshold decrease was at 1 microM Cch; it reached a maximum at 100 microM (50.5% inhibition) and did not decrease further with the use of higher dose. The effect of Cch on Na+/K+-ATPase activity was dependent on both protein kinase C (PKC) and protein phosphatase calcineurin activation since the PKC inhibitor calphostin C abolished Cch effects, while the calcineurin inhibitor FK506 augmented Cch effect. Collectively, these data establish a functional pathway by which Cch can modulate the activity of the Na+/K+-ATPase through a PKC-dependent (calphostin C-sensitive) pathway and a calcineurin-dependent (FK506-sensitive) pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Na+/K+ATPase activity inhibition and isoform-specific translocation of protein kinase C following angiotensin II administration in isolated eel enterocytes.

In the eel, angiotensin II (Ang II) has a role at the level of both gill chloride and kidney tubular cells, regulating sodium balance and therefore osmoregulation. The present study extends these findings to another important osmoregulatory organ - the intestine. Enterocytes were obtained from sea-water (SW)-acclimated eels to investigate the role of Ang II on the intestinal Na+/K+ATPase activi...

متن کامل

Carbachol and nitric oxide inhibition of Na,K-ATPase activity in bovine ciliary processes.

PURPOSE Nitric oxide (NO) donors and cholinergic agents decrease intraocular pressure, in part because they induce a decrease in aqueous humor production. Because Na,K-adenosine triphosphatase (ATPase) is involved in aqueous humor formation, this study was conducted to investigate the hypothesis that NO and cholinomimetics regulate its activity in bovine ciliary processes. METHODS Bovine tiss...

متن کامل

A third mode of ouabain signaling. Focus on "Regulation of ERK1/2 by ouabain and Na-K-ATPase-dependent energy utilization and AMPK activation in parotid acinar cells".

IN RECENT YEARS evidence has emerged that the Na-K-ATPase, a canonical active ion pump, has parallel roles as a platform for cell signaling. Na-K-ATPase has been shown to associate directly with other proteins in signaling complexes in cardiac myocytes, renal cells, and several other cell types (4). Signals transmitted through the Na-K-ATPase and associated Src have been implicated in hypertrop...

متن کامل

Activation of second messenger-dependent protein kinases induces muscarinic acetylcholine receptor desensitization in rat thyroid epithelial cells.

Internalization and phosphorylation of G protein-coupled receptors (GPCR) are considered two important regulatory events of receptor signal transduction. In Fischer rat thyroid (FRT) epithelial cells, we have shown that muscarinic acetylcholine receptor (mAChR) stimulation induces intracellular Ca2+ mobilization via Ca2+ store release, capacitative Ca2+ entry and voltage-dependent Ca2+ channels...

متن کامل

Ouabain potentiates the activation of ERK1/2 by carbachol in parotid gland epithelial cells; inhibition of ERK1/2 reduces Na(+)-K(+)-ATPase activity.

The Na(+)-K(+)-ATPase and the ERK1/2 pathway appear to be linked in some fashion in a variety of cells. The Na(+)-K(+)-ATPase inhibitor ouabain can promote ERK1/2 activation. This activation involves Src, intracellular Ca(2+) concentration ([Ca(2+)](i)) elevation, reactive oxygen species (ROS) generation, and EGF receptor (EGFR) transactivation. In contrast, ERK1/2 can mediate changes in Na(+)-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of endocrinology

دوره 173 2  شماره 

صفحات  -

تاریخ انتشار 2002